Joint Inference for Knowledge Base Population

نویسندگان

  • Liwei Chen
  • Yansong Feng
  • Jinghui Mo
  • Songfang Huang
  • Dongyan Zhao
چکیده

Populating Knowledge Base (KB) with new knowledge facts from reliable text resources usually consists of linking name mentions to KB entities and identifying relationship between entity pairs. However, the task often suffers from errors propagating from upstream entity linkers to downstream relation extractors. In this paper, we propose a novel joint inference framework to allow interactions between the two subtasks and find an optimal assignment by addressing the coherence among preliminary local predictions: whether the types of entities meet the expectations of relations explicitly or implicitly, and whether the local predictions are globally compatible. We further measure the confidence of the extracted triples by looking at the details of the complete extraction process. Experiments show that the proposed framework can significantly reduce the error propagations thus obtain more reliable facts, and outperforms competitive baselines with state-of-the-art relation extraction models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Engineering for Knowledge Base Construction

Knowledge base construction (KBC) is the process of populating a knowledge base, i.e., a relational database together with inference rules, with information extracted from documents and structured sources. KBC blurs the distinction between two traditional database problems, information extraction and information integration. For the last several years, our group has been building knowledge base...

متن کامل

Knowledge Extraction and Joint Inference Using Tractable Markov Logic

The development of knowledge base creation systems has mainly focused on information extraction without considering how to effectively reason over their databases of facts. One reason for this is that the inference required to learn a probabilistic knowledge base from text at any realistic scale is intractable. In this paper, we propose formulating the joint problem of fact extraction and proba...

متن کامل

NAACL - HLT 2012 Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web - scale Knowledge Extraction

Probabilistic knowledge bases are commonly used in areas such as large-scale information extraction, data integration, and knowledge capture, to name but a few. Inference in probabilistic knowledge bases is a computationally challenging problem. With this contribution, we present our vision of a distributed inference algorithm based on conflict graph construction and hypergraph sampling. Early ...

متن کامل

Scaling Inference for Markov Logic with a Task-Decomposition Approach

Motivated by applications in large-scale knowledge base construction, we study the problem of scaling upa sophisticated statistical inference framework called Markov Logic Networks (MLNs). Our approach, Felix,uses the idea of Lagrangian relaxation from mathematical programming to decompose a program into smallertasks while preserving the joint-inference property of the original ...

متن کامل

Large-Scale Knowledge Graph Identification using PSL Extended Abstract

The web is a vast repository of knowledge, but automatically extracting that knowledge, at scale, has proven to be a formidable challenge. A number of recent evaluation efforts have focused on automatic knowledge base population (Ji, Grishman, and Dang 2011; Artiles and Mayfield 2012), and many well-known broad domain and open information extraction systems exist, including the Never-Ending Lan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014